GlobalPottery 1. Historical Archaeology and Archaeometry for Societies in Contact

Edited by
Jaume Buxeda i Garrigós
Marisol Madrid i Fernández
Javier G. Iñanaez

BAR International Series 2761
2015
Published by

Archaeopress
Publishers of British Archaeological Reports
Gordon House
276 Banbury Road
Oxford OX2 7ED
England
info@archaeopress.com
www.archaeopress.com

BAR S2761

GlobalPottery 1. Historical Archaeology and Archaeometry for Societies in Contact

© Archaeopress and the individual authors 2015

ISBN 978 1 4073 1423 5

Printed in England by Digipress, Didcot

All BAR titles are available from:

Hadrian Books Ltd
122 Banbury Road
Oxford
OX2 7BP
England
http://www.barpublishing.com

The current BAR catalogue with details of all titles in print, prices and means of payment is available free from Hadrian Books
Pottery at the Indigenous dwelling site of Cueva Pintada (13th–16th AD) (Gáldar, Gran Canaria, Spain). Contacts, conflicts and ethnic identities

Miguel del Pino Curbelo¹, María del Cristo González Marrero¹, Jorge Onrubia Pintado², José Ignacio Sáenz Sagasti³ and José Mangas Viñuela⁴

1- Grupo de Investigación TARHA, Universidad de Las Palmas de Gran Canaria, Facultad de Geografía e Historia, Departamento de Ciencias Históricas, Edificio Milares Carlo, C/ Pérez del Toro, 30, 35003 Las Palmas de Gran Canaria (Spain) (mdpcurb@gmail.com, maria.gonzalez@ulpgc.es)
2- Universidad de Castilla-La Mancha, Campus de Ciudad Real, Facultad de Letras, Área de Prehistoria, Avda. Camilo José Cela, s/n, Campus Universitario, 13071 Ciudad Real (Spain) (Jorge.Onrubia@uclm.es)
3- Museo y Parque Arqueológico Cueva Pintada, C/ Audiencia, 2, 35460 Gáldar (Spain) (jsaenzs@grancanaria.com)
4- Grupo de Investigación GEOGAR, Universidad de Las Palmas de Gran Canaria, Edificio de Ciencias Básicas, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria (Spain) (mangas@ulpgc.es)

At the pre-Hispanic archaeological park of Cueva Pintada (Spanish for Painted Cave, at Gáldar, Gran Canaria, Spain), evidence shows that it was inhabited from the 7th century AD, with a main occupation from around the 13th century to the years around the beginning of the 16th century. This latter period corresponds to a dwelling site which undoubtedly was part of Agáldar, an indigenous place which was described in texts contemporary with the colonisation of the island. The archaeological remains found at the dwelling site of Cueva Pintada have allowed us to reconstruct the materiality of this process of contact and assimilation. The few typological and archaeometrical analyses of pottery sets which have been carried out so far have emphasized the complex nature of this process.

KEYWORDS: CANARY ISLANDS, GRAN CANARIA, CUEVA PINTADA, COLONISATION, ACCULTURATION, INDIGENOUS, SETTLER, POTTERY, CERAMIC PETROGRAPHY

14.1 Introduction

The pre-Hispanic site of Cueva Pintada (Gáldar, Gran Canaria) shows two clearly distinct phases of activity. The first one started with the initial occupation of the place in the 7th century, and the second one corresponds to Agáldar, the dwelling site that occupied a preeminent position in the social and political organisation at the time of European settlement at the island (14th and 16th centuries). After the conquest, this site continued to house a large indigenous and mixed-race population.

The archaeological remains located in the dwelling site enable us to reconstruct the material details of the process of contact and assimilation. In this sense, a study of the pottery recipients provides a particularly enlightening contribution. Studies of the typology and archaeometric investigations of some of these batches have shown a complex social situation in which the usual division between "local pottery" (made using the hand building technique) and "imported pottery" (made on a wheel) is insufficient. As with the Gran Canaria indigenous/Hispanic settler classification that it is based on, this dichotomy ignores the presence of other players who fall in neither of these over-simplified categories, so the dynamics of the acculturation process are undoubtedly far more entangled.

14.2 Indigenous dwelling site of Cueva Pintada: Structure 12 and its contexts

Cueva Pintada consists of a set of overlaid rooms of different ages. The most recent phase of occupation, the one that interests us in this paper, mostly spans a period from the 15th century to the turn of the 15th–16th century, and represents an intense reorganisation of the pre-existing domestic area, which dates back to the 7th century.

Geological context

This pre-Hispanic village is located in the northeast of Gran Canaria. The island is a volcanic edifice formed by the occurrence of a mantle plume that
eventually drove to alkaline magmatic emissions (hot-spot), initiating a process in which successive episodes of volcanic activity and erosion gave the island its current shape. This volcanic activity has been grouped in various cycles, in chronological order: Ciclo I, Ciclo II (also Roque Nublo), Ciclo III (also Post-Roque Nublo), and Ciclo Reciente (ITGE 1990). The composition of the resultant rocks is variable, including basic—basanites, basalts and tephrites—, intermediate—trachybasalts and phonolites—, and acid igneous—trachytes and rhyolites—; however, tholeiitic and ultra-alkaline compositions are rare (Ancochea et al. 2004).

The pre-Hispanic dwelling site rests on the southern flank of Galdar hill (Figure 14.1), a volcanic core of the Post-Roque Nublo cycle. The geology of the area is mainly volcanic, as can be expected, with fluvial deposits at the south and east of the site that are associated with the radial system of valleys that are characteristic of the island, and maritime deposits on the coastal areas to the north and east. The composition of the most abundant volcanic materials of the region corresponds to nephelitic basalt, characterized by the abundance of olivine partially altered to iddingsite and augite phencryysts, under the shape of magmatic flows and fragmentary rocks—the latter emitted by the same volcanic cone—with consequent differences in their texture and crystallinity. Also basanites and tephrites are present, the first ones characterized by their content in altered olivine, pyroxene and hawaiite; and tephrites containing pyroxene and hawaiite, but no olivine. Flows that are part of recent volcanic activity in the island are also abundant in the area, with similar mineralogical composition to the Post-Roque Nublo emissions (basanitic-nephelinitic rocks and basalts).

To the east and southwest of the archaeological site lie Mount Amagro and Guia hill. Both are outcrops of a Miocene date (Ciclo I) that were unearthy by erosion of the overlying rock layers. Their composition is very different from the one of Galdar hill, being composed by phonolitic-trachytic rocks that are characterized by the abundance of K-feldspars (sandine and nepheline) and much less frequent ferromagnesian minerals, limited to augite-aegirine, brown amphibole and biotite. Looking to the nearby eastern and northeastern coasts, further outcrops of the Roque Nublo cycle are present, though their occurrence is limited to the coastline. In the area of Punta del Moreno, these formations are composed of basic volcanic flows, characterized by altered olivine, augite, less common biotite and amphibole, with apatite accessory minerals. Along the coastline to the east of Punta del Moreno are outcroppings of volcanic breccia composed of a number of different minerals and rock fragments bonded by a glassy groundmass.

Characteristics of the site

We are not going to go into a description of this dwelling site now (Onrubia 2003; in press). One has to remember the evident role that the cave complex plays in its organisation, with many of the dozens of documented semi-subterranean dwellings vying for space in the immediate surroundings. Following a well-known prototype, and with some exceptions that appear to be for what is not strictly residential use, these dwellings are made up of rectangular rooms flanked by one or almost always two sleeping rooms, one off to either side (Figure 14.2). However, in what is merely a duplication of the prototype, two of these living units can be connected longitudinally by a corridor and therefore, seem to form part of a single dwelling.

Built in an area of caves from the first phase and fossilised by what appears to be the base of an old retaining wall, the house catalogued as structure 12 (Figure 14.3) is perfectly in line with this pattern (Martin et al. 1994; 1996; Fontugne et al. 1999). This is a dwelling in which the central room has walls built exclusively of rough ashlar basalt, while the side bedrooms, showing remains of red wall paint, offer a mixture of basalt rocks and tuff stones. The floor of this room consists of packed earth that has been covered, at least in some areas, with a pale mortar that appears to be very rich in calcite.

An abundance of archaeological material has been recovered from this floor in situ. Many of the numerous objects that have been found in the strata blocking off a small cave-chamber off the right-hand bedroom of the house undoubtedly came from dismantling this primary deposit. Fitted out and functional in the first phase of the village’s occupation, this cavity was sealed and blocked off by the bedroom walls during the construction and use of the house. The collapse of these walls during the process of ruin and fossilisation of the room has allowed the archaeological material associated with its original paving to migrate towards the inside of the rock chamber, and to sediment there in a secondary position next to other creep debris.

The archaeological material located in the floor of the house and in the sediment deposits that clogged the small cavity annex are in fact, highly uniform. The indigenous series are found in abundance, including the characteristic clay figures and “pintaderas” (geometric adornments), as are colonial objects. It is in these latter reperitores that pottery recipients abound, together with more scarce metallic elements, such as iron nails and pins, enabling us to set the date of the last episode in which this house was used. Apart from any dating that may be provided by the typological analysis of the imported pottery, which we will come back to later, we have the dating precision that we can obtain from two kinds of colonial materials. We refer on the one hand to the monetary findings and, on the other, to a fragment of fabric that has been dated by 14C.

With regard to the coins, the most significant piece is undoubtedly a white diamond coined during the reign of Enrique IV (1454–1474). But this is not the only specimen located; as another similar diamond was recovered from the same archaeological contexts, coined in Toledo, and a Portuguese celtic coin that could be attributed to the reign of Manuel I (1495–1521). It is true that the history of the circulation of coins in the Canary Islands makes it difficult to use these findings as a precise chronological indicator, as the absence of mints in the islands extended the duration of the legal tender value of coins greatly, with coins being re-
stamped at times to keep their value in line with the times they were in circulation. But it is still important that the vast majority of the coins found at the dwelling site are 15th and 16th century Castilian and Portuguese specimens (González et al. 2013). This time line is also significantly consistent with the range encompassed by calibrated radiocarbon dating obtained for a fragment of hemp taffeta of irrefutably European origin: 1450 to 1640 (Beta-321399: 350 ± 30 BP; Cal BP 500 to 310).

Hence we find that this house seems to have been last used as a dwelling space between the final decades of the 15th century and the first decades of the 16th century. Its later use and abandonment thus coincide with the whole phase of contact, conquest and the earliest re-settlement of the island of Gran Canaria. It goes without saying that greater chronological precision would be desirable to interpret this structure and its archaeological context properly from the point of view of studying the process of acculturation of the Canary Island indigenous people; in other words, their ethnicity and assimilation.

14.3 The indigenous pottery recipients

To date, it is not easy to characterise the pre-Hispanic pottery of Gran Canaria beyond some formal and decorative technological notions that almost always come from simple observation of the recipients and from comparing them with the traditional pottery of the island, or from checking them against references made in the narrative sources of the time of the European settlement process. The main work done to date has been the typologies drawn up from collections of complete recipients, but taken out of any chronological, and often spatial, context (González Antón 1973; Martín 1984). Proposed evolutionary models based on well-defined stratigraphic series, for their part, are far from abundant and for the moment, consist of partial studies applied to specific areas (Navarro 1990; González Quintero et al. 2009).

The approaches taken to pre-Hispanic pottery found in the dwelling site of Cueva Pintada (Onrubia 1986; Fontugne et al. 1999) to date are no exception to this rule. For this very reason, a study of the indigenous recipients from a well characterised and dated structure such as this could turn out to be highly revealing, especially when the typological description is combined with an initial attempt at characterising the pottery paste, as we shall do in this paper.

The sample of indigenous pottery from this structure that was analysed amounted to a total of 504 sherds. The first conclusion that can be drawn is that surfaces commonly present signs of some kind of smoothing process (n=470), showing fully (n=137) or partially (n=171) burnished surfaces. Recipients with smoothed surfaces (n=128) are usually found too, sometimes leaving a smooth, slightly irregular surface (n=34). Of the latter, only 4 present decorative motifs on the surface. At least 60 of the 137 that present a totally burnished surface on the other hand, have painted motifs and 30 are totally red slipped on at least one of their surfaces.

Cases of other kinds of decoration are rare: channelling distributed over the surface of the wall, or associated with the root of the neck of the ovoid recipients and, in only one case, oval-shaped impressions on the external surface of the wall. There are also impressions on the lip of at least two recipients.

Simple forms

Based on the vessels that we have been able to reconstruct, the most recognisable simple forms are low open bowls whose inner and outer surfaces are treated very differently (Figure 14.4, A). The outer finish is usually rough, similar to the effect obtained after scraping (n=36). The interior surface, on the other hand, is usually well smoothed down, and even burnished in 22 cases. Although less common, the inner surface is also sometimes red slipped. These recipients are generally associated with flat or semi-flat lips, sometimes bevilled on the outside. On the other hand, at least 19 cases have been detected that show signs of being exposed to fire, and very similar recipients to those described here have been identified elsewhere as cereal roasters (Navarro 1990, 31).

A second simple shape is presented by the recipients with concave walls and straight rims, and a slightly convex or flat base (Figure 14.4, B). In these cases, there is a wide diversity of sizes and diameters, although the constant factor among all of them is the existence of burnished inner and outer surfaces, including the base, and linear or geometric decorative motifs. Despite all of this, it is true that none of the cases identified in these variations has any associated appendages.

Compound forms

As with the indigenous pottery of Gran Canaria, there is also an abundance of compound forms in this context. This fact, together with the high variability of forms shown by the hand-made pottery, and the fragmentation usually found among the materials, makes the job of reconstructing them from the archaeological registry a complicated one.

The compound forms include the presence of carinated vessels that are characteristic of the island (Figure 14.4, C and D). These vessels have a concave inward-sloping wall that is joined to a spherical cap-shaped base by the fluting. There is only one of these vessels with no kind of decoration, the outer surfaces of two of them have been fully red-slipped and the rest show geometric motifs: triangles, circles and vertical bands. They all show very even surfaces and, once again, only one of them does not have at least one burnished surface. Where the appendage is present, it is trapezoid in shape; it has a perforation in the centre and it spouts from the line of the fluting, sloping in such a way that the distal end is above the proximal end. Bearing in mind the formal similarities, this group could be related in some way with the concave walled vessels described before.

Another shape found is that of a vessel that tends towards a spherical shape, totally red slipped on the outside, with a concave neck and everted lip (Figure 14.4, E). Similar to this kind, but smaller in size, is another vessel
that is a horizontal oval shape with a straight concave neck (Figure 14.4, F). It has not been possible to establish the shape of the base of either of these two vessels.

We have managed to reconstruct other vessels of different sizes with bodies in the shape of an inverted ovoid, flat base and a concave inward sloping neck (Figure 14.4, G and H). The appendages are usually close to the maximum girth of these vessels, which in the smaller vessels consist of spouts with a perforated lobe. The external surfaces of the walls are usually burnished, whereas a more heterogeneous treatment is given to the insides. The smaller vessels associated with handles-spouts have a better inner finish, possibly related to their function as liquid containers. The larger pottery on the other hand, has a more irregular inner surface, which could suggest a different use. Two of the three cases in which it has been possible to totally or partially reconstruct the shape, only present grooving at the base of the neck as decoration (Figure 14.4, H). This situation is repeated on another three incomplete vessels. The other complete recipient has been painted by way of decoration (Figure 14.4, G), with motifs that have already been described for other vessels from Gáldar, although applied to different shapes (Martín 1984, figs. 7 and 8). On the other hand, another specimen has also been partially conserved. This has been painted with an intense burnish, and the distribution of the decorative motifs, together with the characteristics of the burnish, are reminiscent of one of the vessels recovered from the nearby La Guancha burial mound.

Other shapes

Along with the kinds described, other vessels have been found, but their characteristics pose new problems of interpretation that have not been duly addressed to date. First of all, we have an inverted cone-shaped vessel, with a lip that gets fatter on the outside and grooved at the top (Figure 14.5, left). Both surfaces are burnished and there is also a decorative motif painted on the outside, based on pairs of triangles that meet at one of the apexes. The inner surface is totally burnished and painted. This vessel has seven perforations around 1.5 cm in diameter on the flat base with indications of a foot, as well as the grooves on the lip. These cylindrical perforations have been made during the process of making the piece, while the clay was still damp and they are clearly related to the vessel's function.

News on vessels of this kind on the island of Gran Canaria is scarce. A similar vessel was found in the same dwelling site of La Cueva Pintada in the creep debris strata, and another, cacinated one with orifices made after the piece was fired, so both the way it was made and its use seem to be different from the other two found at the site. In fact, this latter piece appeared in an interesting primary deposit of the first phase.

The specialist literature describes vessels of this kind as coladores (colanders) (Pérez 1944; Jiménez 1946). This is a poorly defined name that refers to a heterogeneous set of recipients and sherds whose only common element is the fact that they have orifices in the wall. It is for this reason, despite being classified as "colanders", that it is presently difficult to determine what their function really was. There are examples in other contexts in which similar cases have been related to the preparation of dairy products (cheese) and for cooking vegetable foodstuffs, especially barley (Stilborg 2006; Salvini et al. 2007), a very common cereal in the island dig sites. However, a more in-depth study of these pieces is required to enhance our knowledge about Canary Island specimens and to determine their function and chronology.

Another vessel with unusual morphology with respect to the known kinds of pre-European pottery of Gran Canaria is horizontally oval in shape, with a lip that turns slightly outwards, bevelled and with decoration imprinted on it that consists of small depressions made around the circumference (Figure 14.5, right). Paste is dark coloured, with clear marks from irregular firing, and its walls are burnished.

This form is similar to those described in the archaeological register of the island of La Gomera (Navarro 1992) and although at least one other oval section vessel has been found in the set, and other sherds with motifs imprinted on the wall and lip, this is the most evident case of similarities with the descriptions published for the island of La Gomera.

14.4 Colonial pottery

Although the study of pottery made on a wheel from this structure is still in its initial stages and the list of pieces may increase in the future, to date, the batch of common imported pottery is represented by two interesting specimens of containers for storage and transport: one dolia and one cantimplora. These are models that are very similar to those found in the filling of the domes of some churches, hospitals and convents in Andalusia, which, when studied made it possible to draw up a full register of types of these pottery recipients at the time (Amores and Chisvert 1993; Pleguezuelo et al. 1999).

The dolia documented in this primary deposit is not glazed and it conserves a red slip mark that we have not been able to relate to any of the examples that appear in the specific literature that we have seen (Menéndez 2005; 2007, 16-120). Regarding the use of the term dolia, it is worth pointing out that we prefer to use it to distinguish these vessels from the cantimploras and botijas, on the basis of their particular and specific chronological location, which never places them in a context later than the early 16th century, when the dolias seem to have been replaced by these far more robust and larger containers that were also better suited to sailing on the high seas (Pleguezuelo 1993, 40; Amores and Chisvert 1993, 280-281). This idea is corroborated by the fact that no similar examples have been located in the first European settlements in America (Goggin 1960; Deagan 1987) whereas they have been documented in the Old World (Platt and Coleman 1975, 1291-1308; Hurst 1977, Fig. 33, 55-56).

Cantimploras were the usual containers used on the Seville Atlantic trade at the end of the 15th and beginning of the 16th centuries, as can be seen from the fact that these models are found and distributed in different American
sites (Goggin 1960; 1968; Deagan 1987; Lister and Lister 1987). But, although the piece recovered at this site does not conserve the mouth, which was made of pale yellow paste with thin, unglazed walls, it could be included in the Type A category described by Pleguezuelo and coauthors (1999, 270–271) for which there is no record of finds at American sites, where, on the other hand, glazed specimens abound. At the shoulder, it bears a red slip mark that appears to be a simple Latin cross, found fairly frequently on vessels of this kind (Menéndez 2005; 2007, 116–120). As with the dolia described above, similar vessels have been recovered from European sites (Hurst 1977, 98–101; Francovich and Gelichi 1986, 306–309, 311, Fig. 5.2, tav. XI).

Apart from these unglazed pottery pieces made on a wheel, associated with the group of storage and transport containers, the strata analysed provide an interesting batch of tableware of European origin, consisting of glazed jars, jarritos, platos, cuencos and escaillitas. Melados glazes are very common, with the use of manganese decoration underneath the glaze being especially common. The collection of fine tableware is rounded off with majolica style pottery, such as some platos decorated in blue and manganese, which American historiography calls Isabela polychrome, and certain cuencos and escaillitas of loza dorada. Sherds of cuenda seca pottery were found in higher strata, but they are not the most frequent type. This is a batch of pottery that can also be dated to the 15th and 16th centuries.

Although none of them come from this set, the archaeometric analyses of 18 fragments of colonial pottery from La Cueva Pintada has been carried out (Iñáez et al. 2007; 2009), and the results confirm the fact that most of the majolica ware comes from Triana (Seville), except for one piece of loza dorada, produced in Manises, hence confirming the hypothesis that we put forwards at the time (Onrubia et al. 1998). Only 4 of the 9 samples taken from pieces with melados and green glazes (5 and 4 respectively) could be assigned to Triana potteries (2 and 2). For now, the rest have not been attributed to any known pottery. As other similar batches of pottery have been recorded elsewhere in the Canaries (Tejera and Sosa 1998), we have already mentioned elsewhere (Onrubia et al. 1998) the undeniable similarity that many of the pieces of this colonial repertoire bear with other pottery recovered from African sites. This is the case of those that have been documented at the strata corresponding to the Portuguese presence in Alcázar Seguer (1458–1550), in the north of Morocco (Redman 1986).

14.5 Analysis of pre-Hispanic ceramic pastes

First of all the pottery sherds from structure 12 of La Cueva Pintada were analysed by a visual inspection and with the help of a low power stereo microscope. Groups were made according to fabrics identified, selecting representative individuals of the resulting groups. Eleven thin sections were then taken for petrography studies (Table 14.1). A systematic description of the thin sections was made (Whitbread 1989; 1995) and a modal analysis of them was conducted by point counting (Stoltman 1989; 1991), results indicated in Figure 14.6. For this, a set of variables was defined as a function of the most frequently observed kinds of inclusion observed during the preliminary descriptions (Table 14.2). Groundmass and aplastic fraction were defined according to their granulometry, considering as groundmass particles smaller than 0.05 mm. Measurements were also taken of the diameter of the grain sections (coarse fraction), which were later transformed into a log scale (phi) to represent and interpret them (Figure 14.7). Finally, the nature of the lithological components of the samples was determined and pottery groups were defined from a petrographic point of view.

In general terms, a high percentage of aplastics was found in the clay pastes (Figure 14.8), basically volcanic materials, such as for example a variety of fragments of rock, glass and groundmass and different minerals. Under the microscope and with crossed nicols (XP), all the pottery samples showed birefringence in the clay matrix, except for the cases in which they are partially or totally reduced. These latter cases behave like an opaque material, i.e., without any optic properties with either parallel (PPL) or crossed nicols (XP). This suggests minor changes in the clay matrix during the firing process, and therefore low firing temperatures and/or brief firing processes (Tite 1995; Whitbread 1995).

The most common grain size of the non-plastics is between fine and medium grain (with the highest frequencies normally around a millimetre in diameter), although there are exceptions depending on which pottery group we are referring to. On the other hand, the sorting of the aplastic particles is usually poor, which undoubtedly must be related to the heterogeneity presented by the temper included in the paste (Whitbread 1995). These non-plastic components show clear signs of transport, with the typical appearance of rounded to sub-rounded grains of alluvial sedimentary materials with different states of textural maturity in most of the cases. Less frequent, but also present are sands that have suffer maritime transport.

Bearing in mind the petrographic characteristics of the pottery pastes observed under the microscope and the nature of the non-plastics found, these have been grouped in several sets, which are described below.

Group 1: Fragments of basalt with fresh olivines

- Voids: Channels, planar and vughs. Parallel to walls. Single to open spaced.
- Temper: Single to open spaced. Randomly oriented.
- Matrix: PPL orange-brown. XP highly active, orange-yellow.

This fabric is represented by ceramics with fragments of ultra-basic and basic volcanic rock with a porphyric, vacuolar texture (Figure 14.7 and Figure 14.9), with micro phenocrysts of colourless olivine and clinopyroxenes of green and yellow tones and, sometimes, with marginal zoning (varieties of augite). The groundmass of the rock fragments is dark coloured, although it usually turns paler.
in central areas. Rounded vacuoles are also observed, sometimes coalescent, and without mineral filler.

On the other hand, there are fragments of basic, porphyritic rock with micro-phenocryst of augite and iddingsitised olivine, to a lesser extent, on the edges.

The groundmass is fine grained, comprising of iddingsitised olivine, clinopyroxene and an opaque glassy matrix.

Other inclusions found in the paste are the fragments of microlithic, feldspar rock and dark glassy or golden groundmass material are less abundant.

Group 2: Bioclastic sands

- Voids: vughs and vesicles. Single to double spaced.
- Temper: close single spaced. Randomly oriented.
- Matrix: PPL yellowish. XP active, yellowish colour.

This group of pottery is characterised by the abundant presence of aplastic inclusions of sizes below 0.7 mm (Figure 14.7 and Figure 14.9). In general, these are fragments of rock and volcanic minerals together with rounded and sub-rounded bioclasts, showing a high level of maturity.

Fragments of basic rock of porphyritic texture with phenocrysts of augite and olivine, and fine-grained groundmass comprising of glass and mafic, opaque microcrystals of feldspars are conspicuous by their abundance. These grains are similar to those described in the previous fabric, with olivine crystals that have suffered partial or total iddingsisation. There are also fragments of basic porphyritic rock with small olivine crystals, with a far lower degree of alteration, and opaque, glassy groundmass.

Group 3: Basalts with iddingsitised olivines

- Temper: close to double spaced. Randomly oriented.
- Matrix: PPL ochre and orange; XP orange to yellowish.

This group is characterised by a presence of fragments of ultra-basic and basic rock with vitrophyre-like texture containing micro-phenocrysts of olivine and augite, similar to those described in Group 1 (Figure 14.7 and Figure 14.9). But in this case, the olivine crystals present clear signs of alteration, as they are iddingsitised and pseudo-morphed. Fragments of volcanic glass with similar characteristics to the groundmass of fragments of this kind are also frequent.

Fragments of porphyritic rock with fine grain microcrystalline groundmass similar to those described in the three previous fabrics are also common. These fragments present micro-phenocrysts of iddingsitised olivine and augite, sometimes forming small aggregates of crystals (glomerophyropic texture). A similar percentage of crystals of feldspar have been found, generally fine grained and with no signs of alteration.

Fragments of felsic rock are scarce, they have a microlithic fluidal texture with orange-coloured glassy groundmass, and micro to crypto-crystalline masses of mafic minerals (altered olivine and augite).

Group 4: Glass with stretched vesicles

- Voids: vughs running parallel/oblique to the surfaces. Single spaced to open spaced.
- Temper: Close or open spaced. Randomly oriented.
- Matrix: PPL yellow brown with dark cores and D+ textural concentrations. XP yellow and orange.

The feldspar (plagioclases) crystals are the predominant aplastic component in this group of pottery. It is the only group in which the mineral fraction exceeds the other non-plastic components (fragments of rock, volcanic glass and other minerals) (Figure 14.7 and Figure 14.9). These plagioclases show prismatic and tabular forms or they have a simple (Carlsbad) twin or no twin at all, and in some cases polysynthetic twinning is observed. The mafic minerals on the other hand, are scarce or absent (amphiboles and to a lesser extent, cream or green-coloured clinopyroxenes and iron and titanium oxy-hydroxides, which appear as opaque crystals).

Fragments of volcanic glass on the other hand, are common, including the presence of some light-coloured ones with lentil or tabular-shaped vacuoles that have not been found in the other thin sections examined. Other, orange-coloured fragments appear with the other fragments, with vacular texture and round and ellipse-shaped voids.

Group 5: Phenocrysts of haüynè

- Voids: planar, vughs and vesicles. Parallel / oblique to walls. Double to open spaced.
- Temper: Close or open spaced. Randomly oriented.
- Matrix: PPL orange (TF D+). XP very active orange tone.

The main aplastics in this group are fragments of basic, intermediate rock with porphyric, sequential textures (Figure 14.7 and Figure 14.9), with cream-coloured microphenocrysts of clinopyroxene, sometimes with marginal zoning, haüynè of blue tones and generally with dark reaction edges and to a lesser extent, micro-phenocrysts of amphiboles, with a crown of amorphous material, and opaque (iron and titanium oxy-hydroxides). The groundmass of these fragments is comprised of microlites and mafic minerals (opales).

The other inclusions and non-plastics are very scarce or rare. These include mafic crystals (green-coloured sodium clinopyroxenes and brown amphibole) and feldspars with polysynthetic twins. Rare crystals of biotite and feldsparoids have also been observed. Finally, fragments of hypohyaline rock with microlithic texture and glassy groundmass of orange-coloured tones have been found.
Pottery at the Indigenous dwelling site of Cueva Pintada (13th–16th AD) (Gáldar, Gran Canaria, Spain). Contacts, conflicts and ethnic identities

Group 6: Basic fluid texture rock

- Voids: channels, vugs and vesicles. Single to open spaced.
- Temper: Close to double spaced, randomly oriented.
- Matrix: PPL red-brown to black (core). XP active, yellowish and orangey colours.

Fragments of felsic (intermediate) rock of trachyte-phonolite compositions are frequently found in this group of pottery (Figure 14.7 and Figure 14.9), with micro-lithic and fluidal textures, and the groundmass presents green, dark brown or black tones (glassy).

Some fragments of basic rock of porphyric texture have also been identified, with phenocrysts of clinopyroxene and micro-lithic fluid textured matrix. Opaques are present in the matrix, and rarely as phenocrysts. Together with these fragments, there are others of basic rock of similar composition but with smaller crystals with porphyric, glomeroporphyrpic textures containing micro-phenocrysts of augite and micro-crystalline, sometimes crypto-crystalline groundmass, with an abundant presence of opaque minerals.

Some prismatic crystals of feldspar have also been observed (sometimes forming clusters of several individuals) and, to a lesser extent, of mafic minerals (basically clinopyroxenes similar to those found in the lithic fragments).

Group 7: Altered feldspars

- Voids: channels, sometimes running in parallel to the surfaces. Close to open spaced.
- Temper: close or open spaced, with no clear orientation.
- Matrix: PPL variable-coloured related to firing, ochre brown to black. XP active yellowish to reddish tones.

The common thread running through this fabric is the presence of K-feldspar crystals with major sericitic alteration (Figure 14.7 and Figure 14.9). With these are also found other feldspars of fresh appearance, without twins. Moreover, fragments of felsic rock of microlitic texture are common, with opaque groundmass, possibly made up of altered volcanic glass. Opaque volcanic glass masses are also common. Finally in the category of miscellaneous, we have included other clay inclusions of greater optic density than the matrix (D+). This group must include the vessel that may possibly be related with the pre-Hispanic pottery tradition of La Gomera.

14.6 Discussion

As Bourdieu (1980, 441–461) so relevantly points out, the domestic space, and above all the house, has the status of a microcosm, of a miniature image of the "natural" and "social" world. It is for this very reason that it is in the dwellings that the world of objects reaches its peak and where the relations that are liable to be established between things, people and practices best illustrate the schemes generated by the habitus. This fact makes the study of the houses and their belongings particularly enlightening in the analysis of a process of colonial transition such as this.

The spatial conception and the building techniques and materials used for structure 12 of the Cueva Pintada dwelling site suggest that it is linked to indigenous domestic architecture, without any apparent singularities as far as we know to date. The repertoires associated with its last functional episode however, reflect a range of different origins and traditions that force us to consider a series of questions about the real individual and collective identity of its final inhabitants and, in short, about the active role that these objects may have played, as both cause and effect at the same time, in the process of acculturation and ethnic construction. In other words, is this merely a case of Canary Island indigenous people who were assimilated to a greater or lesser extent? Or, on the other hand, are there any signs of the presence of other players associated with the new "colonial order"? How do the things and the house that contains them help to express, hide, or openly deny the dynamics of integration, resistance or subversion. The study of the pottery recovered may offer some clues in our attempt to answer these questions.

The repertoire of indigenous forms reconstructed to date reveals a variety of types, related to the functions of storage, cooking, preparation and serving of food. The vessels that we have been able to reconstruct show many of the general characteristics traditionally associated with the pre-Hispanic pottery of the island. There are however, important differences in the finish with regard to the shape, capacity and other functional aspects that must be taken into consideration and added to the information that has been contributed by the evolutionary proposals made for the pottery of Gran Canaria to date.

The study of the pottery pastes has enabled us to observe the size distribution of the non-plastic elements found, indicating that, at least in some cases, they were added intentionally, following bimodal distributions (Whitbread 1995). On top of this, there is an upper limit to the grain size of the largest fraction of the paste of around 2 mm (already reported in Feibri and Maldera 1989), which could be related to some kind of intentional selection of grain size, such as sieving. Most of these aplastics seem to come from nearby sources of supply. Moreover, the description of most of the fabrics coincides with the materials present in the geological surrounding of the site, forming part of the Ciclo I and Ciclo III, both of them found in the area in study (Balcera et al. 1992; Ancochea et al. 2004).

Regarding the temperature of firing, birefringence was observed in the matrix in crossed nicsols in all the specimens: This fact indicates a low degree of modification of the matrix due to low firing temperatures.

The recurrence of decorative forms and compositions on this pottery, together with the use of local raw materials and comparable working processes, would appear to suggest a certain identifying "style". This will include other nearby sites, such as the archaeological area of La Guancha, El Agujero and Bocabarranco, as well as the town of Gáldar, in possible relation to the petrographic groups of bioclastic
sands (number 2).

The two kinds of recipients that have been described above under the heading of "other forms" seem to differ from this style, although with significant differences between the two. We refer on the one hand to the "colander" and, on the other, to the unusual pottery that all signs seem to associate with indigenous productions from the island of La Gomera.

Regarding the "colander", and even though some technical and decorative aspects clearly relate it to pre-Hispanic Canary Island pottery, it is worth considering whether its peculiar typology is not more closely related to the influence of a different tradition. And we are not referring here to the need to take into consideration the fact that making these pieces using the hand building technique (coiling) formed part of the know-how of other individuals who at some time or another made pottery in Gran Canaria, such as mainland Spanish craftsmen (e.g. Serra and de la Rosa 1965, 141; Sempere 1999), indigenous people from the other islands or Moorish slaves (Navarro 1999; Zamora and Jiménez 2008). We refer above all to the possibility that the manufacture and use of vessels of this kind could be linked to a modification of eating habits introduced into the island by these other players.

For this to be so of course, first of all, we would have to certify the fact that their function was less related to the manufacture of cheese, which, despite the controversy on the matter, we are certain that the aboriginal inhabitants of Gran Canaria engaged in, than with steaming ground cereals. And second, we would have to prove that this form of culinary preparation, characterised by making cons-coha, for example, a frequent foodstuff among the Moors, was really unknown to the indigenous Canary Islanders. Although narrative sources appear to confirm this ignorance, we cannot forget the fact that a piece has been found in a primary deposit from the first phase of occupancy of this site, albeit of a different kind and as the result of re-use, which shows several perforations in the base.

The issue of the possible presence of a vessel from La Gomera in structure 12 of the Cueva Pintada dwelling site is no minor one. If the relationship of this piece with the pre-Hispanic pottery tradition of another island were to be confirmed, it would certify the genetic multiplicity of the site under study and, therefore, the complexity of the acculturation process itself. This pottery could only have reached the island at that time because, apart from the fact that the batch it belongs to has been dated to the end of the 15th century or beginning of the 16th century, we know that sailing between islands as far apart as La Gomera and Gran Canaria was far from a common event in pre-Hispanic times. This by no means answers the question of the immediate cause for its presence in this dwelling.

The arrival of indigenous people from the island of La Gomera in Gran Canaria during the conquest of the island (1477–1483) is well documented. In fact, right from the beginning of military operations, many of them, slaves set free by the feverish activity on their behalf of Bishop Juan de Frijas, were wandering around the Real de Las Palmas camp. It is also well known that a significant number of them formed part of the contingent that harried the Canary Islanders from Agaete Tower, a few kilometres to the south of Gáldar, under the command of Alonso de Lugo and Hernán Peraza, future Lord of La Gomera. As far as we know, these Gomera Islanders returned home to their own island at the end of 1482, when Fernando Guanarteme, a leading member of the indigenous Canary Island aristocracy living in this indigenous village, returned to Mainland Spain after reaching an agreement with the Castilians. His presence was no longer essential with the arrival of new reinforcements from the mainland in the same expedition, such as the two hundred crossbowmen from Biscay under the command of Miguel de Mújica, and above all with the determined collaboration that the Canary Islanders from Gáldar were to provide from then on in controlling and suppressing the final focuses of resistance of their fellow indigenous inhabitants. The possibility that some of these Gomera Islanders initially posted in the Tower of Agaete remained on the island during the rest of the military campaign and once the island was "pacified" cannot be entirely ruled out.

Whatever happened, the presence of indigenous Gomera Islanders on Gran Canaria started to become really significant once the conquest was completed, due to the repression of a series of up-risings that occurred on La Gomera that culminated in the assassination of Hernán Peraza in 1488. These rebellions were finally put down once and for all, with the help of a large group of indigenous people from Gran Canaria, mainly from Gáldar, with mass executions and mass deportations of the natives of the island to other islands of the Archipelago that had already been conquered, or to Mainland Spain. Gradually, and thanks to the intermediation of "procursers", including some indigenous Canary Islanders who took over from Bishop Frijas, who died in 1483, in defending the indigenous Gomera Islanders who had been unjustly enslaved were saved, and in the case of those exiled to the mainland, they gradually returned to the islands. It is interesting to point out that many of the indigenous Gomera Islanders reached Gran Canaria from Tenerife, were we find them as soon as it was conquered (1496), continually harried by the Council.

As far as we know (Betancor 2003, 203–242), the Gomera Islanders deported to Gran Canaria preferred to settle in the south of the island, the coastal strip between Argüineguín and the mouth of the Tirajana Ravine, and further upstream along this ravine, between Tunte and Fataga, re-using the dwellings of the pre-Hispanic dwelling site to a significant extent. But they probably also settled in other parts of the island, including Gáldar.

For all the above, explaining the presence of a vessel such as the one found in Cueva Pintada in Gran Canaria is not a simple task. In the light of the narrative of events presented above, there is a range of different possibilities. It is possible that the pottery was made in La Gomera and reached Gran Canaria directly, or via some other territory where there were settlements of Gomera Islanders. In this case, their bearers could have been either these indigenous Gomera Islanders, aboriginal Canary Islanders or European settlers, including the inhabitants of the feudal islands,
the conquerors and first people to re-settle Gran Canaria, who maintained some kind of contact with them. The vessel could also have been made in Gran Canaria by some aboriginal Gomera Islander settled here temporarily or permanently.

Unfortunately, the study of the pottery pastes is not yet conclusive with regard to resolving this issue. It is true that the analysis of its degreasants, where sericitised feldspar crystals appear that seem to indicate a plutonic origin of at least part of these elements, does not appear to contradict the possibility of an exotic origin. It so happens that this kind of rock, not to be found in the proximities of the site, can however be found in areas of the Tejeda intra-caldera, at the very summit of Gran Canaria, not far from where there are some of the well documented Gomera Islander settlements. Only new studies will be able to reliably determine the origin of the raw materials used to make this pottery and decide whether these are imported finished products or locally made by indigenous Gomera Islanders, very probably women, perhaps forming mixed domestic units, made up of natives of different origin, indigenous people and settlers—as some documents suggest.

The presence of European pottery also poses similar problems as those posed by the imported materials, and their relative weight in comparison with the indigenous repertoires, in any context of colonial transition (e.g. Gosden 2004; Stein 2005). The data available at this time does not allow us a precise idea of the real proportion of either the one or the other. We can however, highlight the typological variability of the vessels imported from Mainland Spain that could suggest the existence of some new aspects in the form of presenting food and, therefore, in table manners, perhaps relating to the process of acculturation.

Another fact worth emphasising is the exceptional character of some of the fine ware, such as those decorated with cuerda seca or lustre ware. The presence of this luxurious tableware speaks volumes of the high social status of the inhabitants of this dwelling, without saying as much in words, be they pure bred Canary Islanders, or a mixture of Gran Canaria natives and European settlers of different origin that, together with the indigenous people of the other islands, Moors and blacks, characterises the multi-cultural and mixed society that settled the incipient Hispano-Canary Island town of Gáldar. And we are just starting to catch the first glimpses of this entangled social reality thanks to the study of the pottery recovered in the indigenous dwelling site of Cueva Pintada.

14.7 Final remarks

The results obtained in the study of the structure 12 of Cueva Pintada represents a valuable testimony of the entangled acculturation process that took place in the Canary Islands for more than three centuries. The analysis of its ceramic productions has witnessed how the cohabitation of different cultural groups, and the development of stable inter and extra-insular communications, affected the lifestyle of the aboriginal population. In this sense, this paper represents the first attempt to study those inter-insular relations through the study of material culture, normally overshadowed by the opposition between European and local materiality.

Moreover, ceramic pastes characterization has allowed us to approach to the aboriginal production-consumption patterns of indigenous pottery, pointing to the use of local resources. In spite of that it can be said that raw materials employed were quite diverse, what can be possibly related to the co-existence of various productions at the site at the same time.

Nevertheless, more work is needed in order to give an extensive explanation to the results obtained during our analysis. The lack of data to compare them with makes sometimes difficult to recognize which of the characteristics observed are part of the changes related to the acculturation process and which ones can be considered a relict from aboriginal traditions.

Acknowledgements

This paper is the result of the collaboration between the members of two research projects: Arqueología de la aculturación y de la colonización. Gentes, objetos, animales y plantas europeas en Gran Canaria (ss. XV–XVI) (Gobierno de Canarias, ProLd20100180, co-funded by ACHISI and FEDER) and Las relaciones sociales de producción en la isla de Gran Canaria en época preespañola y colonial. Análisis de los procesos de trabajo (Ministerio de Ciencia e Innovación, Gobierno de España HAR2010-19528). This study is included in the project Tecnologías del cambio en el contexto colónico en el Nuevo Mundo. Cultural change in pottery archaeology and archaeometry (Tecnocolonial) (HAR2012-33784, HAR2008-02834/HIST) funded by the Ministerio de Economía y Competitividad (Spanish Government). Miguel del Pino Carbello has a grant from the ACHISI, Gobierno de Canarias (Formación de Personal Investigador ACHISI, co-funded 85 % by FEDER).

References

de las series coloniales bajomedievales y modernas (s. XV-XVI), in *XII Coloquio de Historia Canaria- Americana, I* (coord. F. Morales), 643–663, Cabildo de Gran Canaria, Las Palmas de Gran Canaria.

Pérez, J., 1944, Catálogo de colección cerámica y objetos arqueológicos, *El Museo Canario, 1, Anexo.*

<table>
<thead>
<tr>
<th>Sample</th>
<th>Petrographic group</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 90-1 P</td>
<td>Fragments of basalt with fresh olivines</td>
</tr>
<tr>
<td>CP 164-1 H</td>
<td>Basalts with iddingsitised olivines</td>
</tr>
<tr>
<td>CP 164-2 H</td>
<td>Glass with stretched vesicles</td>
</tr>
<tr>
<td>CP 149 P</td>
<td>Bioclastic sands</td>
</tr>
<tr>
<td>CP 234 P</td>
<td>Phenocrysts of Hauyne</td>
</tr>
<tr>
<td>CP 382-1 P</td>
<td>Basalts with iddingsitised olivines</td>
</tr>
<tr>
<td>CP 382-2 P</td>
<td>Basic fluid texture rock</td>
</tr>
<tr>
<td>CP 470-2 P</td>
<td>Altered feldspars</td>
</tr>
<tr>
<td>CP 485-1 P</td>
<td>Altered feldspars</td>
</tr>
<tr>
<td>CP 535-1 P</td>
<td>Basalts with iddingsitised olivines</td>
</tr>
<tr>
<td>CP 358-2 P</td>
<td>Bioclastic sands</td>
</tr>
</tbody>
</table>

Table 14.1: Samples selected and their petrographic group correspondence.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mafic lithics (ML)</td>
<td>Usually Porphidic texture</td>
</tr>
<tr>
<td></td>
<td>Phenocrysts: Olivine and clinopyroxene</td>
</tr>
<tr>
<td></td>
<td>Groundmass: feldspars, olivine, clinopyroxene,</td>
</tr>
<tr>
<td></td>
<td>opaques and volcanic glass</td>
</tr>
<tr>
<td>Felsic lithic (FL)</td>
<td>Rock fragments formed mainly by feldspars</td>
</tr>
<tr>
<td></td>
<td>Volcanic glass presents in variable quantities</td>
</tr>
<tr>
<td>Ferromagnesian minerals (FM)</td>
<td>Olivine, clinopyroxene, amphibole, opaques</td>
</tr>
<tr>
<td>Felsic minerals (FS)</td>
<td>Feldspars, feldspathoids, zeolites</td>
</tr>
<tr>
<td>Volcanic glass (VG)</td>
<td></td>
</tr>
<tr>
<td>Voids (V)</td>
<td></td>
</tr>
<tr>
<td>Groundmass (G)</td>
<td>Diameters smaller than 0.05 mm</td>
</tr>
<tr>
<td>Others</td>
<td></td>
</tr>
</tbody>
</table>

Table 14.2: Set of variables defined for point counting.
Figure 14.2: Plan of the archaeological site and location of the structure 12.
Pottery at the Indigenous dwelling site of Cueva Pintada (13th–16th AD) (Gáldar, Gran Canaria, Spain). Contacts, conflicts and ethnic identities

Figure 14.3: Structure 12.
Figure 14.4: Most common aboriginal ceramic types found in the structure.

Figure 14.5: Other shapes related to indigenous archaeological levels.
Pottery at the Indigenous dwelling site of Cueva Pintada (13th–16th AD) (Gáldar, Gran Canaria, Spain). Contacts, conflicts and ethnic identities

Figure 14.6: Average temper categories proportions for petrographic groups.
Figure 14.7: Grain size distribution.
Figure 14.8: Ternary diagram showing relation among temper proportion (T), pores (P) and groundmass (G).
Figure 14.9: Microphotographs of thin sections of representative samples (PPL).